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Abstract

Developing countries are under the clutch of malnutrition due to a lack of protein rich food. Protein supply can be broadened by
exploration and exploitation of alternative legume sources. Even though many wild legume landraces have been identified, their uti-
lization is limited due to insufficient attention. Canavalia gladiata, Canavalia ensiformis, Canavalia maritima and Canavalia cathar-

tica are the common under-exploited legume species having the potential to be a rich protein source. This review envisages a
comparative account of nutritional, antinutritional and functional properties and emphasizes the various methods employed in seed
processing of Canavalia spp. The current study helps in understanding the nutritional and antinutritional versatility/potential of
four Canavalia spp., thereby developing future strategies for optimum utilization.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Tropical developing countries are facing an increas-
ing demand for protein-rich food due to teeming popu-
lation, cereal-based diet and scarcity of fertile land
(Sadik, 1991; Weaver, 1994). Legumes are an inexpen-
sive source of proteins with desirable characteristic such
as abundance of carbohydrates, ability to lower the serum
cholesterol, high fiber, low fat (except oilseeds), high
concentration of polyunsaturated fatty acids and a long
shelf life. In addition to B complex vitamins, minerals
and fiber, legumes are also major sources of proteins
and calories (Rockland & Nishi, 1979). They are known
to contain certain bioactive compounds whose beneficial
effects need to be explored for exploitation.

The global production of food legumes in 1998 was
246 million tons (FAO, 1998). According to DOES
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(2000), India produced 39.91 million tons of food le-
gumes in 1998–1999. Research has to be geared to
exploiting the unconventional legume resources to meet
the protein requirements of developing countries. Un-
der-explored legumes are important in terms of food
security, nutrition, agricultural development, enhance-
ment of economy and also as rotation crops. Thus, little
known legumes can play an important role in agricul-
ture as they are potent plants, which contribute to the
world food production due to their adaptation to ad-
verse environmental conditions and high resistance to
diseases and pests.

The current review deals with nutritional and antinu-
tritional properties of whole seeds and cotyledons of
Canavalia spp. (Canavalia gladiata, Canavalia maritima,
Canavalia ensiformis and Canavalia cathartica). The
physicochemical features, minerals, amino acids, fatty
acids and functional properties of these landraces are
furnished in this review. Antinutritional factors (conca-
navalin A, canavanine, canaline, canatoxin, urease, sap-
onins, other toxins) and their effects and detoxification
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studies have been discussed. The role of Canavalia in
medicine and pest control has also been projected. Sug-
gestions have also been made on possible future lines of
action to exploit Canavalia spp.
2. Canavalia

The genus Canavalia consists of four subgenera with
51 species (Smartt, 1990) encompassing C. ensiformis

(L.) DC. (Synonym: Dolichos ensiformis L.), Canavalia

gladiata (Jacq.) DC. (Synonym: Dolichos gladiatus

Jacq.), C. maritima Thouars [Synonym: Canavalia line-

ata (Thunb.) DC.; Canavalia obtusifolia (Lam.) DC.;
Canavalia rosea (Sw.) DC.; Dolichos maritimus Aublet;
Dolichos obtusifolius Lam.; Dolichos roseus Sw.] and
C. cathartica Thouars [Synonym: Canavalia microcarpa

(DC.) Piper; Canavalia turgida Graham ex A. Gray;
Canavalia virosa (Roxb.) Wight et Arn.; Dolichos virosus

Roxb.; Lablab microcarpus DC.].
C. gladiata (sword bean) has an Asian origin spread-

ing throughout the tropics as they are resistant to
drought (Herklots, 1972; Kay, 1979). They are culti-
vated in Asia, West Indies, Africa and South America.
Average yield ranges from 720 to 1500 kg ha�1 in Cen-
tral America (Bressani, Brenes, Gracia, & Elias, 1987).
In India, three germplasm of C. gladiata are recognized
(red flowers with red seeds, white flowers with white
seeds and white flowers with red seeds) (Purseglove,
1968). Accessions of C. gladiata from different agrocli-
matic regions show variations in seed germination, plant
height, number of branches and leaves, leaf area, flower-
ing, fertility index and seed weight (Vadivel, Janardha-
nan, & Vijayakumari, 1998). Seeds of C. gladiata are
similar to C. ensiformis except for hilum, which is as
long as seed (Purseglove, 1968; Smartt, 1976). The white
seeded variety is commonly preferred for consumption
and contains less antinutritional factors (Purseglove,
1968). Mature seeds of C. gladiata were consumed by
ancient Indians and currently by urban populations
too (Rajaram & Janardhanan, 1992). Palliyar tribes of
Srivilliputhur, Western Ghats consume C. gladiata seeds
for food and also to supplement their diet (Arinathan,
Mohan, Britto, & Chelladurai, 2003). In Indonesia seeds
of C. gladiata are consumed after boiling, washing, dec-
oating, soaking and fermenting (Kay, 1979). In other
parts of Asia, C. gladiata seeds are soaked, boiled with
sodium bicarbonate, rinsed, pounded and used in curries
or as a substitute for potatoes (Kay, 1979). Pods of C.

gladiata should be harvested during the 3–5 months be-
fore hardening to be used as vegetable (Hoshikawa,
1981a, 1981b). In Sri Lanka the immature pods of C.

gladiata are used either directly or after boiling (Ekana-
yake, Jansz, & Nair, 2000a). The roasted and ground
beans are used as a substitute for coffee in Central
America (Bressani et al., 1987). Smartt (1976) and
Ekanayake et al. (2000a) reported susceptibility of C.

gladiata to root rot and scab diseases by Colletotrichum

lindemuthianum and Elsinoe canavaliae. Immature seeds
of C. gladiata are a source of novel gibberellins, GA22
and GA21 (Murofushi et al., 1969).

C. ensiformis (jack bean) originated in South America
and is grown in the tropics and subtropics (Smartt,
1985). In the rest, they were cultivated in drought-prone
areas of Arizona and Mexico and utilized as high pro-
tein food and forage crops (in Southwestern United
States, Mexico, Central American countries, Brazil,
Peru, Ecuador and West Indies) (Sauer & Kaplan,
1969). In Nigeria it is grown on walls and trees as an or-
namental plant (Udedibie, 1990). Colonization of C.
ensiformis by mycorrhiza and rhizobia results in good
growth and regeneration under harsh soil and climatic
conditions (Rodrigues & Torne, 1991a; Udedibie & Car-
lini, 1998a). Total yield of forage and dry seeds of C.

ensiformis ranges from 1 to 10 t�1 ha�1 yr�1 (Addison,
1957; Kessler, 1990). Variation in seed yield was associ-
ated with differences in pod numbers and seed weight.
Vadivel and Janardhanan (2001) reported the seed coat
color of C. ensiformis ranging from maroon-red in south
India. Green immature pods of C. ensiformis are usually
consumed as vegetables (Purseglove, 1974). Occasion-
ally the pods are subjected to decay by Fusarium solani

in the monsoon season (Rodrigues & Torne, 1991b).
Bressani et al. (1987) advocated seeds of C. gladiata

and C. ensiformis as a good source of proteins like most
edible legumes. Processed young pods of C. gladiata and
C. ensiformis are used in the preparation of pickles
(Hoshikawa, 1981a, 1981b). Fusarium moniliforme, F.

solani (endophytes), Aspergillus flavus and A. japonicus

(epiphytes) are the main fungal components of seeds
of C. gladiata and C. ensiformis (Rodrigues & Torne,
1990a).

C. maritima (beach bean) is a pantropical pioneer
plant species (Gross, 1993), widely distributed on coastal
sand dunes by drift dissemination of seeds (Nakanishi,
1988). In the United States, it occurs in central and
southern Florida coasts as well as in Texas. Nitrogen fix-
ing bacteria (Sinorhizobium) isolated from root nodules
of C. maritima of Southern Taiwan are halotolerants
(3–3.5% w/v NaCl) (Chen, Lee, Lanm, & Cheng,
2000). Thus, the unusual plant growth in dunes may
be attributed by colonization of rhizobia as well as
mycorrhiza (Arun & Sridhar, 2005; Beena, Arun, Ravi-
raja, & Sridhar, 2001). C. maritima is commonly used as
a biomass cover crop in third world countries and arid
lands in Australia and Africa. It is a potent cover crop
and prevents soil erosion in dry and sandy areas. Germi-
nation of C. maritima seeds decreased, with the increase
in burial depth (Arun, Raviraja, & Sridhar, 2001) and
permanent seawater flooding was found to be fatal
(Martinez, Vazquez, White, Thivet, & Brengues, 2002).
C. maritima was an important food for British explorer
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captain James Cook and his crew during the world voy-
age from 1768 to 1771 (http://www.floridata.com/ref).
The young pods and seeds (boiled or roasted) are edible
in northern Australia.

C. cathartica (Maunaloa), a wild ancestral form of C.

gladiata, is distributed throughout tropical Asia, Africa
(Purseglove, 1974), and the southwest coast of India
particularly in mangroves and coastal sand dunes
(Arun, Beena, Raviraja, & Sridhar, 1999; Arun, Sridhar,
Raviraja, Schmidt, & Jung, 2003). Sastrapradja, Lubis,
Lubis, and Sastrapradja (1981) reported a natural hy-
brid of C. cathartica and C. gladiata, while artificial
hybridization of C. cathartica and C. ensiformis de-
creased pollen fertility in F1 and F2 progenies. Gamma
irradiation (4 and 6 krad) improved germination of C.

cathartica seeds (Rodrigues, 1993). Kathiravan and
Ignacimuthu (1999) successfully transplanted tissue cul-
tured plants of C. cathartica to the field after hardening.

The study of epidermal features of leaves, pods and
anthers of C. gladiata, C. ensiformis and C. cathartica re-
vealed two distinct types of stomata (paracytic and anis-
ocytic), crystalliferous cells and non-glandular trichome,
and a broad based cell with pointed tip (Rodrigues &
Torne, 1990a, 1990b).
3. Physicochemical properties

Canavalia are large seeded and structurally similar,
but differ to each other in size, shape, color and thick-
ness of the seed coat (Table 1). C. gladiata seed weight
(2.23–4.87 g) was found to be the highest followed by
C. ensiformis, C. cathartica and C. maritima. The per-
centage of cotyledon was more in C. ensiformis (84.67–
89.13%) owing to its thin seed coat (10.87–15.33%).
Arun et al. (2003) reported higher seed, cotyledon and
seed coat weights of C. cathartica than C. maritima in
coastal sand dunes of India, while seed weights of
non-coastal C. cathartica (Siddhuraju & Becker, 2001)
correspond to C. maritima of Central America (Bressani
et al., 1987).
Table 1
Physical characteristics of seeds of Canavalia spp.

Seed features Canavalia ensiformisa Canavali

Seed weight (g seed�1) 1.37–1.84 2.23–4.87
Cotyledon weight (g seed�1) 1.16–1.64 1.73–3.88
Seed coat weight (g seed�1) 0.2–0.21 0.48–0.99
Seed length (cm seed�1) 1.86–1.88 2.53–2.56
Seed width (cm seed�1) 1.28–1.32 1.58–1.64
Seed thickness (cm seed�1) 1.09 –
Hilum length (cm seed�1) 1.12 –

–, Not determined.
a Akpapunam and Sefa-Dedeh (1997), Bressani et al. (1987), and Siddhura
b Bressani et al. (1987), Ekanayake et al. (1999), and Siddhuraju and Beck
c Arun et al. (2003) and Bressani et al. (1987).
d Arun et al. (2003) and Siddhuraju and Becker (2001).
Chemical composition of the four species of Canava-

lia reviewed reveals inadequate information pertaining
to C. maritima and C. cathartica (Table 2). Legumes
consist of storage (70–80%) as well as structural proteins
(20–30%), which are located in cells as discrete bodies.
According to Salunkhe, Kadam, and Chavan (1985)
the protein of major edible legumes ranged between
22.3% and 39.2%, of which the soybean is an outlier.
The proteins of Canavalia seeds are higher than wheat
(8.55%), parboiled rice (7.7%) and egg (12.6%) (Livsme-
delsverk, 1988). The edaphic features of geographic
locations influence the quantity and quality of Canavalia

seed proteins. The minimum seed proteins of Canavalia

ranges from 22.4% to 24.9% (Table 2), but Arinathan
et al. (2003) reported only 12.9% in C. gladiata. Among
the seed varieties of C. gladiata, the brown variety was
found to have the highest protein (35%) (Siddhuraju &
Becker, 2001). According to Rodrigues and Torne
(1991c), seeds of C. gladiata and C. ensiformis have high-
er protein than C. cathartica. The highest percentage of
protein attained at 16 weeks of cultivation (28.18%)
facilitates C. ensiformis to be employed as a forage le-
gume (Diaz, Gonzalez, Mora, & Curbelo, 1998). Mature
and immature beans of C. maritima have 26.3% and
13.3% protein and proteins of leaves, pods of mature
beans and dry beans of C. maritima were 19.3%, 8.6%
and 7.8%, respectively (Graham & DeBravo, 1985).

Proteins are classified into three basic groups (globu-
lins, 70%; albumins, 15%; glutelins, 15%) and possess
essential amino acids. As with other common pulses,
albumins and globulins are the major seed proteins of
Canavalia spp. (Table 2). Albumins of C. gladiata are
elevated after attaining 1.8 g seed weight, followed by
the active synthesis of globulins (Yamauchi & Minamik-
awa, 1986), which accumulate until maturation. Protein
digestibility of Canavalia seeds is poor due to their large
proportion of globulins, antinutritional factors and sec-
ondary metabolites (Bressani et al., 1987; Bressani &
Sosa, 1990; Ekanayake, Jansz, & Nair, 2000b). The
in vitro protein digestibility of C. gladiata and C. ensi-

formis seeds are lower than C. cathartica and comparable
a gladiatab Canavalia maritimac Canavalia catharticad

0.50–0.71 0.64–0.82
0.35–0.50 0.44–0.58
0.15–0.21 0.20–0.24
– 1.16
– 0.98
– –
– –

ju and Becker (2001).
er (2001).
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Table 2
Chemical compositions of raw seed flours of Canavalia spp.

Component Canavalia ensiformisa Canavalia gladiatab Canavalia maritimac Canavalia catharticad

Moisture (%) 3.80–13.5 7.58–12.2 9.30–10.6 9.20
Crude protein (g 100 g�1) 22.8–35.3 26.8–35 22.4–34.1 24.9–35.5
True protein (g 100 g�1) 24.2–28.2 20.8–21.3 29.3 28.8
Albumins (g 100 g�1) 7.80–8.60 5.10–5.60 7.60 7.40
Globulins (g 100 g�1) 13.0–14.6 12.5–13.0 18.8 18.5
Prolamins (g 100 g�1) 0.63–0.91 0.91–0.98 0.30 0.30
Glutelins (g 100 g�1) 1.84–1.96 1.81–2.06 2.80 2.70
Crude lipid (g 100 g�1) 1.60–12.1 1.40–9.90 1.60–1.70 1.30–4.9
Crude fiber (g 100 g�1) 4.70–11.4 2.05–12.8 10.2–17.3 7.00–10.4
Ash (g 100 g�1) 2.30–5.80 3.19–4.18 3.20–3.50 3.03–3.80
Total starch (g 100 g�1) 24.7–36.9 31.8–39.6 – 32.0
Digestible starch (g 100 g�1) 26.1 18.7–20.0 – 23.0
Resistant starch (g 100 g�1) 10.8 11.8–14.0 – 9.00
Crude carbohydrates (g 100 g�1) 45.8–65.4 45.1–68.5 44.9–50.5 48.2–59.6
Energy value (kJ 100 g�1) 1470–1910 1690–1830 1590 1510–1790

a Agbede and Aletor (2005), Akpapunam and Sefa-Dedeh (1997), Arora (1995), Bressani et al. (1983), Bressani et al. (1987), D�Mello et al. (1985),
D�Mello et al. (1988), D�Mello and Walker (1991), Ellis and Belmar (1985), Herrera (1983), Kessler et al. (1990), Laviada (1983), Mohan and
Janardhanan (1994), Molina et al. (1974), Molina et al., 1977, Novus (1994), Ologhobo et al. (1993), Rajaram and Janardhanan (1992), Revilleza
et al. (1990), Rodrigues and Torne (1991c), Siddhuraju and Becker (2001), Spoladore and Teixeria (1987), Udedibie et al. (1994), and Vadivel and
Janardhanan (2001).

b Bressani et al. (1987), Ekanayake et al. (1999), Mohan and Janardhanan (1994), Rajaram and Janardhanan (1992), and Siddhuraju and Becker
(2001).

c Abbey and Ibeh (1987), Arun et al. (2003), and Bressani et al. (1987).
d Arun et al. (2003), Siddhuraju and Becker (2001), and Thangadurai et al. (2001).
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to different cultivars of Phaseolus vulgaris (Siddhuraju &
Becker, 2001). The in vitro protein digestibility of C.

gladiata of raw whole seeds and cotyledons were
71.73% and 70.08%, while in vivo digestibility were
41.8% and 51.4%, respectively (Ekanayake et al.,
2000b). It is likely the in vitro protein digestibility might
have been over estimated due to usage of enzymes of dif-
ferent origin.

Total lipids of major legumes range from 1.0% to
46.7%, of which winged bean (15.9%), soybean (21.3%)
and groundnut (46.7%) are the outliers (Salunkhe et al.,
1985). Generally, Canavalia seeds are low in lipids, how-
ever, lipids of C. gladiata and C. ensiformis were higher
than in commonly consumed pulses in India (Vigna rad-

iata, Phaseolus mungo, Cicer arietinum and Cajanus ca-

jan) (Mohan & Janardhanan, 1994). Crude lipids of
different accessions of C. gladiata seeds significantly dif-
fered (Vadivel et al., 1998). The lipids of C. ensiformis

and C. gladiata seeds are found to be higher than C.

maritima and C. cathartica.
The fiber of Canavalia spp. falls within the range of

4.7–17.3% (Table 2). C. maritima possesses the highest
amount of fiber (10.2–17.3%) compared to other Cana-

valia species and this may be attributed to seed coat fea-
tures. The recommended daily intake of fiber is between
25 and 50 g. The physiological benefits of high fiber in-
take are increased fecal bulk and moisture, reduced plas-
ma cholesterol, positive influence on blood glucose and
insulin concentration. Cellulose and hemicellulose are
the major constituents of crude fiber and are known to
have hypocholesterolemic effects. Dietary fiber is known
to absorb bile salt aided by saponins and also prevents
various diverticular degenerative diseases. Low fiber in-
take is linked with incidence of cancer of the colon and
rectum, diverticular diseases, coronary heart diseases,
diabetes and gallstones (Burkett & Trowell, 1975). Neu-
tral fiber of C. ensiformis was high (23.38%) and is
attributed to the seed coat fraction and other cellulosic
seed constituents. Germination of seeds of C. ensiformis
elevates neutral fiber (40.08%) due to vegetative parts
(Akpapunam & Sefa-Dedeh, 1997). Pectic substances
(Arabinose, galactose and uronic acid) are the main
non-soluble fibers of Canavalia spp. (Table 3). Glucose
(neutral sugar) and arabinose and xylose (hemicellulose
residue) are the major insoluble dietary fibers. Ash com-
position of Canavalia spp. ranged between 2.3% and
5.8% (Table 2). Siddhuraju and Becker (2001) indicated
that ash percentage of C. ensiformis, C. gladiata and C.

cathartica seeds fall within the range of several culti-
vated pulses.

Crude carbohydrates and energy of Canavalia spp.
(44.9–68.5) are similar to common pulses (Table 2).
The carbohydrates include monosaccharides, oligosac-
charides, starch and other polysaccharides. The non-
structural carbohydrates of legumes are not utilized by
monogastric animals due to the difference in amylose–
amylopectin ratio of starch (Rao & Rao, 1978) or pres-
ence of heteropolysaccharides and oligosaccharides
(Bell, Lackey, & Polhill, 1978). Low molecular weight
carbohydrates such as sucrose and sucrosyl oligosaccha-
rides are present in legumes. The total non-reducing sug-
ars (1.79–2.71%) found in C. ensiformis seeds are sucrose



Table 3
Soluble and insoluble dietary fiber constituents of Canavalia spp.
(g kg�1 DM)a

Fiber Canavalia

ensiformis

Canavalia

gladiata

Canavalia

cathartica

Soluble fibers
Rhamnose 0.23 0.31–0.39 0.27
Fucose Traceb Trace–0.05 0.06
Ribose 0.28 0.38–0.52 0.32
Arabinose 1.30 0.98–0.74 1.01
Xylose 0.30 0.30–0.49 0.24
Mannose 0.20 0.26–0.46 0.22
Galactose 0.45 0.59–0.82 0.46
Glucose 0.39 0.39–0.52 0.36
Uronic acids 5.05 5.36–6.25 6.75

Insoluble fibers

Rhamnose 1.28 2.98–3.2 2.70
Fucose 0 0.28–0.48 0.31
Ribose 0.68 0 0
Arabinose 8.63 10.42–15.96 18.45
Xylose 7.16 9.30–10.27 9.76
Mannose 1.09 1.63–1.75 1.87
Galactose 5.18 4.32–4.4 4.26
Glucose 19.74 24.73–29.29 26.75
Uronic acids 18.43 25.26–31.04 21.15
Klason lignin 105.4 114.3–123.72 141.08

Total soluble fiber 8.20 0.16–8.65 9.69
Total insoluble fiber 167.59 210.61–202.72 226.33
Total dietary fiber 175.79 211.37–220.77 236.02

a Siddhuraju and Becker (2001).
b <0.05 g kg�1.
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(1.49–2.47%), raffinose (0.34–0.86%) stachyose (1.44–
1.74%) and verbacose (0.01–0.11%) (Revilleza, Men-
doza, & Raymundo, 1990). Flatulence potential of C.

gladiata seeds are higher than C. ensiformis (Revilleza
et al., 1990). The oligosaccharides (raffinose, stachyose
and verbacose) of legumes are responsible for flatulence
and hinder its acceptance as food. The most important
legume carbohydrate, starch has a characteristic appear-
ance for each plant species. The length and breadth of
starch grains and gelatinization temperature of starch
of C. ensiformis, C. gladiata and C. cathartica seeds dif-
fered (Rodrigues & Torne, 1991d). Seeds of C. ensifor-

mis are known for their energy due to rich starch and
amylose (287–350 g kg�1) (Molina & Bressani, 1975).
The percentage of digestible starch of C. gladiata is more
than C. ensiformis and C. cathartica (Siddhuraju &
Becker, 2001) and resistant starch is comparable to cul-
tivated legumes (21–44%). Such low digestibility of
starch is due to antinutritional factors such as phytic
acid and polyphenols (Siddhuraju & Becker, 2001).

Digestible energy coefficients for most of the legumes
fall between 85% and 90% of gross energy of legume
seeds, while metabolizable energy is within the range
of 75% and 85% (Ali, 2000). Canavalia spp. has higher
energy (1470–1910 kJ 100 g�1) than commonly culti-
vated pulse crops (1358–1426 kJ 100 g�1) (Kuzayali,
Cowan, & Sabry, 1966).
4. Minerals

Seed minerals of Canavalia spp. showed a narrow dif-
ference (Rodrigues & Torne, 1991c) and were less than
in edible legumes (Bressani et al., 1987). However, Mo-
han and Janardhanan (1994) reported C. ensiformis and
C. gladiata seeds are rich in minerals (sodium, potassium
and calcium) comparable to common pulses (Vigna

unguiculata and C. arietinum), while magnesium and
phosphorus were higher than C. cajan. Among the mac-
rominerals, potassium was found to be the highest in
Canavalia spp. and C. cathartica and C. maritima are
found to be a good source of zinc (Table 4). Except
for sodium, the rest of the minerals were higher in C.

maritima than C. cathartica (Arun et al., 2003). Decrease
in minerals is evident after processing of seeds (e.g.,
cooking, roasting, soaking, dehulling) (Agbede & Ale-
tor, 2005). Rajaram and Janardhanan (1992) indicated
that the seeds of C. gladiata and C. ensiformis are the
potential sources of minerals fulfilling two thirds of rec-
ommended dietary allowances by NRC/NAS (1989).
Heavy metals (lead, <0.8 lg g�1; cadmium, 0.05 lg g�1;
mercury, 325 lg g�1) (Ekanayake, Jansz, & Nair, 1999)
of C. gladiata are fall within the tolerable intake
(0.04 mg day�1) (FNB/NRC, 1989).
5. Amino acids and fatty acids

Glutamic acid and aspartic acid were the major amino
acids of Canavalia spp. as in soybean, rice and egg pro-
tein (Table 5). Legumes are rich in lysine and deficient
in tryptophan and methionine (chickpea, 0.8%, 1.2%; pi-
geon pea, 0.8%, 1.1%; black gram, 0.5%, 1.1%; green
gram, 0.4%, 1.5%; lentil, 1.0%, 1.9%) (Gupta, 1982) cor-
roborating the results of earlier studies in Canavalia spp.
(Bressani et al., 1987; Ekanayake et al., 1999; Mohan &
Janardhanan, 1994). Surprisingly, sulphur amino acids
in C. cathartica and C. maritima were more than in soy-
beans (Table 5). Therefore, C. cathartica demands fur-
ther exploration as a genetic base for hybridization in
view of maximizing protein quality of other gene pools
of Canavalia. Essential amino acids (EAA) (isoleucine,
leucine, tyrosine, phenylalanine and lysine) of C. gladiata

seeds were adequate (FAO/WHO, 1991), while EAA of
C. ensiformis (isoleucine, leucine and tyrosine) were high-
er than common legumes (Vigna mungo and V. radiata,
C. arietinum and C. cajan) (Mohan & Janardhanan,
1994). Seeds of red and brown varieties of C. gladiata,
C. ensiformis and C. cathartica are rich in aspartic acid,
glutamic acid and histidine (Siddhuraju & Becker,
2001). Thermal processing decreases the concentration



Table 4
Minerals compositions of seeds flours of Canavalia spp. (mg 100 g�1)

Mineral Canavalia ensiformisa Canavalia gladiatab Canavalia Maritimac Canavalia Catharticad Adult dietary allowancee

Sodium 5.80–1670 0.26–83.9 48.0 17.6–49.1 500
Potassium 450–2860 790–2280 800–974 889–977 2000
Calcium 100–600 150–310 86.2–290 83.8–225 800
Phosphorus 51–600 262–625 158–330 137–325 800
Magnesium 50.0–230 65.2–172 23.1–160 5.14–158 280–350
Iron Trace–9.33 Trace–45.2 Trace–4.53 2.88–5.08 10
Copper 0.33–10.0 0.36–1.67 0.28–1.16 0.20–1.89 1.5–3
Zinc 1.10–98.1 1.37–8.42 3.85–13.1 11.4–12.58 15
Manganese 0.22–7.05 0.23–1.08 0.87–2.02 1.41–1.44 2–5

a Agbede and Aletor (2005), Arora (1995), Bressani et al. (1987), D�Mello et al. (1988), Kessler et al. (1990), Mohan and Janardhanan (1994),
Novus (1994), Rajaram and Janardhanan (1992), Rodrigues and Torne (1991c), Siddhuraju and Becker (2001), Udedibie et al. (1994), and Vadivel
and Janardhanan (2001).

b Arinathan et al. (2003), Bressani et al. (1987), Ekanayake et al. (1999), Mohan and Janardhanan (1994), Rajaram and Janardhanan (1992), and
Siddhuraju and Becker (2001).

c Arun et al. (2003) and Bressani et al. (1987).
d Arun et al. (2003) and Siddhuraju and Becker (2001).
e NRC/NAS (1989).
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of amino acids, particularly lysine and methionine.
Methionine supplementation has been advocated to meet
the deficiency of sulphur amino acids of Canavalia seeds
(Bressani et al., 1987). However, according to Salunkhe
(1982), fortification is difficult in legumes, as they will
be cooked prior to consumption.
Table 5
Amino acid compositions of Canavalia spp. (mg 100 mg�1 protein)

Amino acid Canavalia

ensiformisa
Canavalia

gladiatab
Canavalia

maritimac
Canav

cathar

Glutamic acid 2.4–16 6.3–17 18 11–17
Aspartic acid 2.3–14 6.0–16 23 9.7–22
Serine 1.1–5.0 2.2–5.4 5.0 5.2–5.
Threonine 1.0–4.3 2.4–4.2 5.2 4.0–4.
Proline 0.8–4.3 2.5–4.4 4.5 2.5–4.
Alanine 0.1–4.7 2.5–4.6 5.2 3.5–5.
Glycine 0.9–4.3 2.2–4.6 4.4 3.5–4.
Valine 1.1–5.3 3.1–5 6.8 3.62–6
Cystine Trace–0.9 Trace–0.9 6.1 1.1–6.
Methionine Trace–1.2 Trace–3.8 0 0–1.5
Isoleucine 5.3 3.4–5.
Leucine 2.5–16j 8.6–13.8j 10 5.9–12
Tyrosine 0.8–3.3 2.2–4 4.0 2.6–4.
Phenylalanine 1.1–5.2 2.2–5.0 7.5 3.4–7.
Tryptophan 0.3–1.2 0.4–1.3 0 0–0.9
Lysine 1.3–6.8 4.3–6.1 13 4.9–15
Histidine 0.6–3.2 2.6–4.2 0 0–3.6
Arginine 1.1–5.6 3.4–5.1 2.8 3.4–4.

a Arora (1995), Bressani et al. (1987), D�Mello et al. (1985), D�Mello et al.
Janardhanan (1994), Novus (1994), Rajaram and Janardhanan (1992), and S

b Bressani et al. (1987), Ekanayake et al. (1999), Mohan and Janardhanan
(2001).

c Arun et al. (2003).
d Arun et al. (2003) and Siddhuraju and Becker (2001).
e Bau et al. (1994).
f Livsmedelsverk (1988).
g Whole egg protein (FAO (1970)).
h FAO/WHO (1991) pattern
i Cystine + methionine.
j Isoleucine + leucine.

k Tyrosine + phenylalanine.
The fatty acid profile of Canavalia spp. is projected in
Table 6. The polyunsaturated fatty acids (PUFA) are
the principal fatty acids of legumes. The PUFAs: eicosa-
pentaenoic acid (EPA) and docosahexaenoic acid
(DHA) have been studied for health benefits (Nair,
Leitch, Falconer, & Garg, 1997; Simopoulos, 1999). Al-
alia

ticad
Soybeane Ricef Egg proteing FAO/WHO

Patternh

17 15.2 13
11 8.8 9.6

4 5.7 5.4 7.6
7 3.8 3.2 5.1 3.4
7 4.9 4.3 4.2
4 4.2 5.8 5.9
6 4.0 4.5 3.3
.0 4.6 6.6 6.9 3.5
4 1.7 1.2 5.9

1.2 2.6 3.4 2.5i

1 4.6 4.3 6.3 2.8
7.7 8.2 8.8 6.6

1 3.4 3.7 4.2
3 4.8 5.1 5.7 6.3k

1.2 1.3 1.7 1.1
6.1 3.7 7.0 5.8
2.5 2.4 2.4 1.9

1 7.1 7.7 6.1

(1988), D�Mello and Walker (1991), Kessler et al. (1990), Mohan and
iddhuraju and Becker (2001).

(1994), Rajaram and Janardhanan (1992), and Siddhuraju and Becker
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pha linolenic acid is converted into EPA and in turn
DHA and is inhibited by linoleic acid (Emken, Adlof,
& Gulley, 1994). The DHA is particularly important
in infant nutrition (Oski, 1997). Seeds of C. gladiata

and C. ensiformis are rich in essential fatty acids (linoleic
and linolenic acid), which surpass C. cajan and Glycine
max (Gupta, Rauf, Ahmad, Ahmad, & Osman, 1983;
Mohan & Janardhanan, 1994; Siddhuraju & Becker,
2001). The PUFA of Canavalia spp. (71.1–77.6%)
(C.gladiata, C. ensiformis and C. cathartica) also sur-
passed cowpea (68.1%), chickpea (67.1%) and broad
bean (63.8%) (Siddhuraju & Becker, 2001). Low
amounts of trans-fatty acids (elaidic and linoelaidic
acids) are present in Canavalia spp. (Siddhuraju &
Becker, 2001), which are responsible for an increase in
low-density lipids and decrease in high-density lipids.
Palmitic acid, oleic acid and linoleic acid of C. gladiata

and C. ensiformis, and oleic acid are predominant fatty
acids in C. cathartica and C. maritima, (Arun et al.,
2003; Mohan & Janardhanan, 1994). Gupta et al.
Table 6
Fatty acid compositions of seeds flours of Canavalia spp. (g 100 g�1)

Fatty acid Canavalia ensiformisa Canaval

Saturated fatty acids
Laurie acid (C12:0) 0.12 0.17–0.2
Myristic acid (C14:0) 0.51 0.55–0.7
Palmitic acid (C16:0) 15.9–21.8 16.7–47
Stearic acid (C18:0) 1.92–7.37 2.74–11
Arachidic acid (C20:0) 0.83 0.76–0.7
Henicosanoic acid (C21:0) 0.07 0.10–0.1
Behenic acid (C22:0) 0.65 0.45–0.4
Tricosanoic acid (C23:0) 0.16 0.14–0.1
Lignoceric acid (C24:0) 1.68 1.19–1.5
Cerotic acid (C26:0) 0.58 0.63–1.0
Polyunsaturated fatty acids
Myristoleic acid (C14:1) 0 0–0.16
Palmitoleic acid (C16:1) 2.02–9.44 0–2.79
Heptadecenic acid (C17:1) 0.11 0.25–0.3
Elaidic acid (C18:1) 0 0
Oleic acid (C18:1) 36.8–47.4 22.5–47
Linoleic acid (C18:2) 11.6–18.0 10.7–16
Linolelaidic acid (C18:2) 0.03 0–0.04
Linolenic acid (C18:3) 6.62–13.3 6.56–8.4
Eicosenoic acid (C20:1) 2.20 1.01–1.3
Eicosadienoic acid (C20:2) 0.24 0.16–0.2
Eicosatrienoic acid (C20:3) 0 0
Arachidonic acid (C20:4) 0 0
Erucic acid (C22:1) 0.18 0.17–0.1
Docosadienoic acid (C22:2) 0.03j 0
Docosatetraenoic acid (C12:0) 0.04 0.04–0.0
Docosapentaenoic acid (C12:0) 0.45 0.63
Nervonic acid (C12:0) 0.06 0.07–0.1
P/S ratioe 2.43–3.46 0.72–3.1

–, Not determined.
a Mohan and Janardhanan (1994) and Siddhuraju and Becker (2001).
b Mohan and Janardhanan (1994), Siddhuraju and Becker (2001), and Spo
c Arun et al. (2003).
d Arun et al. (2003) and Siddhuraju and Becker (2001).
e Ratio of polyunsaturated/saturated fatty acids.
(1983) opined that C. gladiata should be considered as
a potential minor oilseed.
6. Functional properties

Very little information is available on the functional
properties of seeds of Canavalia spp. Functional proper-
ties of legume seed flours are essential for an advanta-
geous utilization through various processing techniques.
Raw seeds of C. maritima possess good water and oil
absorption capacities, protein solubility (pH 12), foaming
capacity (at increased concentration, addition of NaCl)
and emulsion capacity (dependent on pH and salt concen-
trations) (Abbey & Ibeh, 1987). Raw C. ensiformis seed
flours have better foaming capacity (20%) than germi-
nated beans (6%) due to hydrolysis of germinated seed
proteins by enzymes (Akpapunam & Sefa-Dedeh,
1997). Heat processing of seeds reduced foaming activity
and stability of flours C. ensiformis (Akpapunam &
ia gladiatab Canavalia maritimac Canavalia catharticad

1 – 0.20
2 – 0.90

.3 2.30 0–21.3
21.6 2.43–28.2

8 – 0.75
2 – 0.12
8 – 0.53
5 – 0.22
3 – 1.66
5 – 0.70

– 0
0 0–1.82

1 – 0.27
– 0.07

.4 63.9 38.6–71.0

.4 11.9 0–24.8
– 0.05

9 0 0–3.54
5 – 0.88
2 – 0.23

– 0.04
– 0

8 – 0.09
– 0

9 – 0
– 0.68

1 – 0.05
2 3.17 2.47–2.56

ladore and Teixeria (1987).
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Sefa-Dedeh, 1997), and also foaming activity and emul-
sion capacity of C. maritima (Abbey & Ibeh, 1987) due
to the heat denaturation of the proteins. The protein sol-
ubility profile of raw seed flours of C. ensiformis and C.

maritima did not project wide variation (Adebowale &
Lawal, 2004; Abbey & Ibeh, 1987). Raw seed flours of
C. ensiformis showed improved functional properties on
employing various physicochemical parameters (gelation
capacity at low ionic strength and addition of carbohy-
drates; water absorption capacity at ionic range 0–
0.2 M NaCl; emulsion activity and stability at pH 10
and 2% w/v flour concentration; foaming capacity at
pH 10, low ionic strength and 4% w/v flour concentration;
foaming stability at pH 4, low ionic strength, and high
flour concentration) (Adebowale & Lawal, 2004).

Functional properties of legume proteins except for
soybean are scanty. Protein isolates of C. ensiformis

have good nitrogen solubility (acidic and alkaline pH),
water and oil holding capacities, while emulsion stability
and viscosity were pH dependent (Chel, Perez, Betancur,
& Davila, 2002). Fibrous residues of C. ensiformis seeds
have high emulsifying activity, low emulsifying stability
and high water holding capacity (Betancur, Peraza,
Moguel, & Fuertes, 2004). Succinylated C. ensiformis

seed starch has improved paste and gel clarity, solubil-
ity, swelling capacity and viscosity (Betancur, Garcia,
Cañizares, & Chel, 2002). Starch of C. ensiformis seeds
has poor cooked paste properties due to ratio of amy-
lose/amylopectin fractions, types and quantities of lip-
ids, proteins and salts (Akpapunam & Sefa-Dedeh,
1997).
7. Antinutritional features

Raw seeds of Canavalia spp. consist of antinutritional
factors (ANF) such as phenolics, tannins, saponins, cya-
nogenic glycosides, concanavalin A, canavanine and
hydrogen cyanide (Table 7). Most of the legume ANFs
are heat-labile. The major ANFs in legumes include:
protease inhibitors, lectins, goitrogens, antivitamins,
phytates, saponins, estrogens, flatulence factors, aller-
gens and lysinoalanine (Liener, 1981). Heat-stable
ANFs (e.g., phytate and polyphenols) are not eliminated
by simple soaking and heating, but through germination
or fermentation. Nowadays, some of the ANFs (e.g.,
tannins) are of much interest due to antioxidant activity
as a potential health benefit.
7.1. Concanavalin A

Concanavalin A (Con A) is the most studied plant
lectin, it was first isolated and crystallized by Sumner
and Howell (1936). C. ensiformis seeds are the natural
source of Con A (Merck, 1989). Con A represents 20%
of the total proteins of the seeds (Dalkin & Bowles,
1983) and is the most widely explored lectin as a bio-
chemical reagent due to its ease of isolation, purification
and availability of a great variety of molecules with
which it can interact. Con A exists in two conformations
(locked and unlocked) that differ in their metal ion and
saccharide binding properties (Brown, Koenig, &
Brewer, 1982). In the presence of excess metal ions
(e.g., Mn2+ and Ca2+), Con A (100%) are bound tightly
to the metals and associated with saccharide (locked)
and the reverse condition of Con A is the unlocked con-
formation. Con A is specific for the monosaccharides
such as D-mannose and D-glucose (Liener, 1974). Immu-
nological and peptide mapping studies of Con A and
Con A-like lectin (a-D-glucoside and a-D-mannoside)
of C. ensiformis showed a close structural relationship
and is inversely related in relative abundance at different
stages of seed development (Raychaudhuri & Singh,
1986).

Synthesis of Con A and canavalin (a major storage
protein and modified form of the enzyme a-D-mannosi-
dase) initiates after 30 days of flowering (Yamauchi &
Minamikawa, 1986, 1987). Accumulation of canavalin
was active at 30–50 days after flowering and Con A in-
creases until seed maturation (80 days of flowering).
Con A is synthesized as pro-Con A (glycosylated precur-
sor), it will be processed by the excision of a small gly-
cosylated from the center of pro-Con A and the
ligation of two polypeptides (Faye & Chrispeels, 1987).
The processing is complex with intermediate-sized poly-
peptides appearing at different phases of development of
cotyledons. In C. ensiformis, the key step of conversion
of Con A into an active lectin is by the removal of N-
glycan from it which is catalyzed by N-glycanase (Shel-
don, Keen, & Bowles, 1998). The largest amounts of
functional mRNA for Con A and a-D-mannosidase
are found in the early stages of seed development,
i.e., before the period of highest protein deposition,
indicating slow post-translational modification of these
proteins which is distinct from other legumes (Ray-
chaudhuri, Nayogim, & Singh, 1987).

Con A is present in cultured tissues of isolated em-
bryos and cotyledons of C. ensiformis (90 days), but it
was absent in root cultures, hence, tissue culture can
be an important research tool to study biosynthesis of
Con A (Sato et al., 1993). Tissue cultures obtained from
embryos or cotyledons of C. cathartica were investigated
for lectin biosynthesis (Jayavardhanan, Padikkala, &
Panikkar, 1996). In C. cathartica, lectin was present in
all the callus cultures except in the roots and the callus
derived from the cotyledon of immature seeds exhibited
the largest concentration. In mature seeds of C. ensifor-

mis, Con A was present in protein-storage vacuoles of
parenchyma cells and during seed development it was
localized in the endoplasmic reticulum and Golgi appa-
ratus (Herman & Shannon, 1984). Con A-like lectin was



Table 7
Antinutritional components of seed flour of Canavalia spp.

Component Canavalia ensiformisa Canavalia gladiatab Canavalia maritimac Canavalia catharticad

Total phenolics (mg 100 g�1) 730–1818 640–710 1400 1500–1552
Tannins (mg 100 g�1) 0–900 0–230 0 0–5800
Condensed tannins (mg 100 g�1) 0 Trace – 0
Saponins (mg 100 g�1) 571 813–1005 – 852
Cancanavalin A (mg 100 g�1) 1500–3500 – – –
Canavanine (mg 100 g�1) 2500–5100 2637–3060 – 2860–3270
L-DOPA (mg 100 g�1) 2460–2630 2130–3010 – 4300
Hydrogen cyanide (mg 100 g�1) 0–11.2 5–109.3 – 13
Phytic acid (mg 100 g�1) 0–2800 0–868 – 478–1100
Phytin (mg 100 g�1) 18.5 – – –
Phytin phosphorus (mg 100 g�1) 5.22 – – –
Trypsin inhibition activity (mg g�1) 0.022–6.3 8.85–10.22 0 0–5.26
Unit g�1 12.4
Chymotrypsin inhibition activity 1.26 2.2–3.48 – 0.5
Unit mg�1

Alpha-amylase inhibition activity 0 0 – –
Unit g�1 3.77
Phytohemagglutinin activity
Cattle RBC (HU mg�1) 163 161–164 – 163
Human RBC (A) + (Alb) 0, + (Alb) – –

+ (Glo) +, ++ (Glo)
Human RBC (B) + (Alb) + (Alb) – –

+ (Glo) +, ++ (Glo) – –
Human RBC (O) + (Alb) + (Alb) – –

+ (Glo) +, ++ (Glo) – –
HU mg�1 40.6 80.5–81.9 – 40.8
Rabbit RBC ++ – +++ +++
HU mg�1 4.0

-, Not determined.
+, ++, +++, Extent of RBC clumping.
a Agbede and Aletor (2005), Akpapunam and Sefa-Dedeh (1997), Babar et al. (1988), Belmar et al. (1999), Mohan and Janardhanan (1994),

Rajaram and Janardhanan (1992), Rodrigues and Torne (1992), and Siddhuraju and Becker (2001).
b Laurena et al. (1994), Mohan and Janardhanan (1994), Okolie and Ugochukwu (1989), Rajaram and Janardhanan (1992), Rodrigues and Torne

(1992), Siddhuraju and Becker (2001), and Thangadurai et al. (2001).
c Arun et al. (2003).
d Arun et al. (2003), Rodrigues and Torne (1992), and Siddhuraju and Becker (2001).
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detected in large amount in tissues of cotyledons and
embryos of C. gladiata, while only in minor quantities
in epicotyls and hypocotyls (early stage), and it declined
in cotyledons with growth (Ghosh, Dasgupta, & Sircar,
1985). The seeds of C. ensiformis contain lectin-binders
associated to respective lectins, of which Con A binder
appears in the roots during germination and growth
(Gansera, Schurz, & Ruediger, 1979). Marcus, Burgess,
Maycox, and Bowles (1984) opined that several molecu-
lar forms of lectins occur during the development of the
C. ensiformis seedling.

Siddhuraju and Becker (2001) observed that all the
Canavalia spp. were found to have high hemagglutina-
tion activity against cattle and human erythrocytes.
Compared to seeds of C. gladiata, 50% reduction of
agglutination was noted in C. ensiformis and C. cathar-

tica against human erythrocytes. The minimal concen-
tration of C. maritima lectin which agglutinate rat
blood cells was 4 lg ml�1 and the saccharide binding
specificity of this lectin is similar to that of Con A in
C. ensiformis (Su, Chen, & Tung, 1980). Mohan and
Janardhanan (1994) showed that the globulin seed frac-
tion of C. gladiata strongly agglutinated all types of hu-
man erythrocytes as in the case of Entada scandens and
Alysicarpus rugosus, but albumin weakly agglutinated A
and O blood groups. However, albumin and globulin of
seeds of C. ensiformis exhibited only a weak agglutina-
tion with no blood group specificity as in Dolichos la-

blab, Psophocarpus tetragonolobus, P. scandens and
Vigna sesquipedalis (Mohan & Janardhanan, 1994). Lec-
tins of Canavalia spp. also exhibited a strong agglutina-
tion activity against rabbit RBC (Table 7). Agglutinin
activity of C. gladiata seeds can be detected by a hemag-
glutinin assay using trypsinized erythrocytes and by a
binding assay with horseradish peroxidase (Kojima,
Ogawa, Seno, & Matsumoto, 1991). The latter method
could become a method of choice as it determines agglu-
tinins at 50–500 mg ml�1 concentrations. The agglutina-
tion studies indicated that lectins of C. gladiata has
sugar-binding specificities similar to Con A. The amino
acid sequences of major lectins of C. maritima derived
from proteins after enzymatic digestion with trypsin,
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chymotrypsin and protease from Staphylococcus aureus

were found to be very similar (91%) to Con A of C. ens-

iformis (Perez, Perez, Sousa, Moreira, & Richardson,
1991), and also lectins of C. maritima and C. cathartica

studied by Fujimura, Terada, Jayavardhanan, Panikkar,
and Kimoto (1993).

Binding of Con A to mucosal glycolipids of the diges-
tive tract (Jaffe, 1980) inhibits the activity of brush bor-
der enzymes of enterocytes (Rosenthal, 1972), interferes
with the enterobacterial adherence to intestinal wall
(Jayne-Williams, 1973), and exerts side effects on im-
mune functions, protein metabolism, enzyme activity
and hormonal regulation (Putsztai, 1989). Purified lectin
of C. maritima is mitogenic for human peripheral blood
mononuclear cells (Karnboj et al., 1992). On offering
rats a Con A containing diet, food rejection was a com-
mon feature. The gastric incubation studies hypothe-
sized food rejection could be due to binding of Con A
to the glycosylated molecules of the gut membrane
impairing food intake and absorption (Larue, Picard,
& Louis, 1992). Con A also induces severe reduction
in food intake by non-ruminants (Liener, 1953). The
dose response curves of food intake by young chicks
projected a linear decrease up to 0.85% con A (Léon,
Caffin, Plassart, & Picard, 1991). This is associated with
the hemagglutinating and carbohydrate binding capac-
ity involving glycosylated proteins and lipids of the gut
cells. Feeding of raw seed diet of C. ensiformis contain-
ing Con A (24 g kg�1) to broiler chicks resulted in endo-
cytosis due to binding of Con A to intestinal villi
(Mendez, Vargas, & Michelangeli, 1998). Feed intake
and body weight were reduced by the diet containing
10% raw C. ensiformis seeds indicating broiler chicks
can tolerate daily intake of 100 mg Con A over 6 weeks
without affecting growth. On administration of 20 mg C.

ensiformis Con A, caused intensive scaling of the apical
portion, ulceration and necrosis of villi of Wistar rats
(DeOliveira, Vidal, & Sgarbieri, 1989).

Con A from C. ensiformis has a wide range of appli-
cations (e.g., antiviral, mitogenecity, isolation of immu-
noglobulins, blood group substances and glycoprotein
hormones) (Surolia, Prakash, Bishayee, & Bachhawat,
1973). Con A is a potential molecule to be considered
for tumor therapy by immunomodulation (Ruediger &
Gabius, 2001). Lee and Damjanov (1984) provided a de-
tailed map of C. ensiformis Con A-binding sites in the
mouse testis and epididymis. Hence, lectins can be used
as specific markers of spermatogenic cells and epididy-
mal segments. Histological observations of normal and
pathologically altered human peripheral nerves through
fluorescein isothiocyanate labeled Con A provides base-
line data of the reaction pattern of lectins with human
peripheral nerves and thereby Con A can be a tool to
study peripheral nerve pathology (Estruch & Damjanov,
1986). Con A histochemistry is a reliable tool to study
structural and secretary glycoconjugates of jejunal mu-
cosa and is useful in the study of diseases related to cell
maturation cycle of small bowel (Vecchi et al., 1987).
Con A may be used as a marker of structural changes
in various stages of normal and abnormal epidermal cell
differentiation (Reano et al., 1982). Carcinomas from
different colonic regions have a more uniform distribu-
tions of carbohydrates than normal mucosa which was
found by employing Con A of C. ensiformis (Caldero
et al., 1989). Con A shows distinct binding patterns in
different nerve structures and can be used to reveal het-
erogeneity in sugar residues of glycoconjugates within
neural and vascular components of nerves. Thus, it is
useful in detecting changes in glycoconjugates during
nerve degeneration and regeneration after trauma or
pathological states (Gulati, Zalewski, Sharma, Ogrow-
sky, & Sohal, 1986). Rodrigues and Torne (1990c) sug-
gested that seed lectins of C. gladiata can be used as
an anti A, anti B, while lectins of C. cathartica as anti
O and anti Oh (Bombay group) blood grouping re-
agents. Mannose-binding lectins (Con A) are useful in
creating transgenic plants resistant to insect herbivory
(Sauvion, Charles, Febvay, & Rahbe, 2004). Lectins
provide protection against fungi (Ensgraber, 1958),
mediation of sugar storage and transport (Ensgraber,
1958; Sumner & Howell, 1936), control of cell division
during germination (Sharon & Lis, 1972) and influence
the entry of rhizobia into the root cortex (Bohlool &
Schmidt, 1974; Hamblin & Kent, 1973).

Seeds of C. ensiformis also possess another lectin
known as concanavalin B (33.8 kD) constituting 0.9%
of the total seed protein (Schlesier, Nong, Horstmann,
& Hennig, 1996) and shows 40% sequence identity with
plant chitinases belonging to glycosyl hydrolase family
devoid of chitinase activity (Hennig, Jansonius, Terwiss-
cha, Dijkstra, & Schlesier, 1995).

7.2. Canavanine and canaline

Non-protein toxic amino acid, L-canavanine (2-ami-
no-4-guanidinooxy-butyric acid) (Cav) an analog of L-
arginine (2-amino-5-guanidinovaleric acid) (Rosenthal,
1991) is stored in the seeds of many leguminous plants
(Lavin, 1986). Cav is naturally abundant in seeds of C.

ensiformis, C. gladiata and C. cathartica and can be
commercially exploited for extraction (Rodrigues &
Torne, 1992). Cav of Canavalia spp. ranges from 2500
to 5100 mg 100 g�1 (Table 7). The Cav was first isolated
from C. ensiformis seeds by Kitagawa and Tomiyana
(1929). It constitutes about 26.5–50 g kg�1 of dry weight
of seeds of C. ensiformis (Natelson, 1985; Rosenthal,
1972) and is thermostable (melting point, 184 �C)
(Merck, 1989). Cav and arginine in C. maritima ac-
counts for 30% and 5% of total free amino acids, respec-
tively, and are located in the vacuoles (Yu & Kwon,
1992). Cav is cleaved into canaline (Can) (a natural poi-
sonous product) by arginase and detoxified by the for-



K.R. Sridhar, S. Seena / Food Chemistry 99 (2006) 267–288 277
mation of a stable oxime between Can and glyoxylic
acid in C. ensiformis (Rosenthal, Berge, & Bleiler,
1989). Analysis of arginase (L-arginine amidinohydro-
lase) from mitochondria of C. ensiformis revealed that
arginine-dependent and Cav dependent activities
(ADA and CDA) were localized within it (Downum,
Rosenthal, & Cohen, 1983). It has been revealed that a
single macromolecule appears to be responsible for both
ADA and CDA of arginase of C. ensiformis. The Cav
administered plants had a similar degradation patterns
to those of Can administered plants indicating the
importance of arginine-mediated hydrolysis of Cav to
Can during Cav metabolism (Rosenthal et al., 1989).

The enzyme, carboxymethyltransferase (109 kD), an
isoform of ornithine isolated from leaves of C. maritima,
utilizes Can as a substrate (Lee & Kwon, 2000) and
plays an important role in Can biosynthesis. Cav and
Can metabolism revealed that they were synthesized
by homoserine. The Cav metabolism is similar to the
mammalian Krebs–Henseleit ornithine–urea cycle
(Rosenthal, 1982). Studies conducted on the utilization
of carbamoylphosphate by seedlings of C. ensiformis im-
plied biosynthesis of Cav from Can via the O-ureido-L-
homoserine pathway constitutes an important in vivo
route of Cav production. Cav cleavage to Can is a deg-
radative phase and there is no evidence for the reutiliza-
tion of Can in ureidohomoserine formation.

The callus of C. maritima grown in light (green callus)
showed Cav and Can, but only Can was detected in cal-
lus grown in darkness (white callus) (Hwang, Kim, &
Kwon, 1996a). Supplementation of Can to suspended
green callus cells resulted in de novo synthesis of Cav.
Exogenous supply of Cav to white callus cell suspen-
sions resulted in synthesis of Can and homoserine.
Hwang, Lee, Kim, Lee, and Kwon (1996b) concluded
that Cav synthesis is controlled by the coordination of
ornithine cabamyltransferase, argininosuccinate synthe-
tase and argininosuccinate lyase. Rosenthal, Berge,
Ozinskas, and Hughes (1988) demonstrated that Cav
functions as nitrogen storing metabolite in seeds of C.

ensiformis. When L-(guanidiooxy) Cav was injected into
a fresh green cotyledon of 9-day old C. ensiformis seed-
lings, it was transported from the cotyledons to the
shoots (but not the roots) and was divided uniformly
in 90 min (Rosenthal & Rhodes, 1984). Hence, Cav
plays an important role in nitrogen storage within the
developing cotyledons. Cav shows plant-inhibitory effect
and was demonstrated by an immersion test and a
microdrop test that employed rice seedlings (Nakajima,
Hiradate, & Fujii, 2001).

The Cav in seeds of C. ensiformis was reported to dis-
appear during germination (Bell, 1960; Nakatsu, Mat-
suda, Sakagami, Takahashi, & Yamatato, 1996;
Rosenthal, 1970). During inhibition and germination
of seeds, Cav is mobilized and released into the rhizo-
sphere (Rosenthal, 1990). However, Esonu (1996) dem-
onstrated that C. ensiformis seeds exhibit strong effects
in chicks even after sprouting and prior to heating. Dur-
ing germination of C. ensiformis seeds in light and dark
only minor changes in amino acids were determined, the
Cav of seeds declined slightly during germination and
reached the lowest value after 24 h of germination in
the dark (D�Mello, Walker, & Acamovic, 1988). Obi-
zoba and Obiano (1988) and D�Mello and Walker
(1991) demonstrated that Cav solubilizes in water and
converts to non-toxic cyclic deaminocanavanine on
heating (Rosenthal, 1977).

The mechanism of inhibition of Cav is closely related
to the inhibition of arginine metabolism. The Cav re-
places arginine in proteins resulting in aberrant macro-
molecules of reduced activity (Crine & Lemieux, 1982)
and causes deleterious biological effects in those organ-
isms that are sensitive to Cav (Rosenthal, Berge, Bleier,
& Rudd, 1987). Poultry can catabolize Cav because of
the presence of arginase in the kidney and liver (D�Mel-
lo, 1989). The biological effects of Cav include reduction
of protein and glycoprotein synthesis, inhibition of alka-
line phosphatase activity and RNA synthesis (Rosen-
thal, 1977). The structural similarity of Can to
ornithine allows it to react with pyridoxal phosphate
moiety of B6-containing enzyme to form covalently
bonded Schiff base, thus, Can inhibits pyridoxal phos-
phate-dependent enzymes (Rosenthal, 1981) by compet-
ing with ornithine in the arginine urea cycle or by
complex formation with pyridoxal-phosphate cofactor
(Acamovic, 1987). The Can reductase (�167 kD) iso-
lated and purified from 10-day old leaves of C. ensifor-

mis performs three important functions: detoxification
of Can, increment of one-half of overall yield of ammo-
niacal nitrogen release from Cav and permitting carbon
skeleton of Cav to support vital metabolic reactions
(Rosenthal, 1992a).

The Cav incorporation in diets of growing chicks de-
pressed feed intake and growth (�25%) than control diet
(Michelangeli & Vargas, 1994). The Cav exerts growth
depression exclusively by reduction in feed intake.
Although Cav is not the principal antinutritional factor
in C. ensiformis seeds, its presence in the diet precludes
optimum growth performance of chicks. Seeds of C. ens-

iformis fed to sheep resulted in a decrease of ammonia
and valerate concentrations in the rumen and an in-
crease in the relative proportion of Gram-negative ru-
men bacteria (Dominguez & Stewart, 1990). However,
studies with Can suggested that it was not responsible
for the shift in the rumen microbial population. Cav is
toxic against viruses (Robertson, Bates, & Stout,
1984), microorganisms and insects (Rosenthal, 1988,
1992b). On feeding larvae of Spodoptera with castor
leaves sprayed with Cav (50–1000 mg kg�1) extracted
from C. ensiformis, growth was seen until pupation
(30 days), thereafter (first instar larvae) growth was re-
tarded (Koul, 1985). Feeding of Cav-treated food
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(1000 mg kg�1) to third instar larvae reduced growth
rate significantly. The Cav of C. ensiformis causes anti-
fertility in Periplaneta americana with no significant ef-
fects on body weight and food intake (Koul, 1983).

The Cav showed antitumor activity against Walker
carcinoma, human melanoma, pancreatic cancer (Kruse
& McCoy, 1958; Mattei, Damasi, Mileo, Delpino, &
Ferrini, 1992; Swaffar, Ang, Desai, & Rosenthal,
1994), in vivo murine leukemia and rat colon tumors
(Green, Brooks, Mendelsohn, & Howell, 1980; Thomas,
Rosenthal, Gold, & Dickey, 1986). The Cav is suitable
for pancreatic cancer studies due to lack of considerable
amount of arginase in the pancreas (Swaffar & Ang,
1999).

7.3. Canatoxin

Carlini and Guimaraes (1981) isolated canatoxin, a
neurotoxic protein from the seeds of C. ensiformis. It
is also present in most of the leguminous seeds except
for peanuts and castor (Carlini, Barcellos, Baeta, & Gui-
maraes, 1988). Canatoxin is a covalently linked dimer
polypeptide (95 kD) possessing zinc and nickel (Follmer
et al., 2001), whose internal peptides share homology
with urease of C. ensiformis, but are unrelated to urease
activity. Canatoxin (LD50, 2 mg kg�1) is immunologi-
cally related to soyatoxin (LD50, 7–8 mg kg�1) and is
lethal to mice as well as insects (Vasconcelos, Trentim,
Gulmaraes, & Carlini, 1994). Canatoxin in the crude ex-
tract of C. ensiformis seeds induced dyspnea, ataxia,
hypothermia, coma, tonic convulsions and death in mice
when administered intraperitoneally (100–
200 mg toxin kg�1) (Carlini & Guimaraes, 1981; Carlini,
Oliveira, Azambuja, Xavier, & Wells, 1997). However,
Carlini and Guimaraes (1991) hypothesized that cana-
toxin from C. ensiformis seeds is unstable at acidic pH
of the stomach and is therefore not an antinutritional
factor. The pharmacological and toxicological effects
of canatoxin in mice and rats resulted in lethal tonic
convulsion after 10–15 min of intravenous injection
(pure toxin, 2–3 mg kg�1) (Carlini et al., 1984). The
CNS was found to be the site of action but mode re-
mains unexplained. It also causes in vitro aggregation
of platelets in rabbits, human and guinea pigs (Carlini,
Guimaraes, & Ribeiro, 1985), biphasic alteration in
blood glucose level when injected intravenously into rats
and mice (Ribeiro, Carlini, Pires, & Guimaraes, 1986)
and release of insulin from isolated rat pancreatic islets
(Barja, Guimaraes, & Carlini, 1991; Enyikwola, Addy,
& Adoga, 1991). Canatoxin inhibits DNA synthesis,
produces a cytolytic effect (0.050–0.500 lM) to various
cells in vitro (Campos, Carlini, Guimaraes, Marques,
& Rumjanek, 1991), induces lipoxigenase-dependent hy-
poxia in rats (Ribeiro, Prado, Collaresm, & Siste, 1992),
serotonin release from rabbit platelets and rat brain syn-
aptosomes (Barja et al., 1991), induction of dose-depen-
dent rat hind–paw oedema (Alves, Ferreira, Ferreira, &
Carlini, 1992), inhibition of Ca2+ accumulation cata-
lyzed by Ca2+ ATPase and neutrophile migration in rats
(after 4 h) on intraperitoneal injection of canatoxin
(Ghazaleh, Araujo, Barja, & Carlini, 1992). Canatoxin
is also highly toxic to some species of insects dependent
on cathapsin-based digestion (Ferreira, Gombarovits,
Masuda, Oliveira, & Carlini, 2000), because of its char-
acteristic digestive correlation (Carlini et al., 1997).
7.4. Polyphenols and polyamines

Polyphenols are known to complex with iron, which
renders iron unavailable for absorption (Brune, Rossan-
der, & Hallberg, 1989; Hurrel, Reddy, & Cook, 1999).
About 1.3% of polyphenols have been reported in Cana-

valia spp. Germination of C. ensiformis seeds (40 h) re-
sults in a decrease of 35% polyphenols (Babar,
Chavan, & Kadam, 1988). Total phenolics of Canavalia

spp. ranges from 640 to 1818 mg 100 g�1 (Table 7). As
in most legumes, C. gladiata seeds have lower levels of
condensed tannins (0–2.48 catechin g�1) and protein
precipitable polyphenols (0.16–0.77 mg tannic acid g�1)
(Laurena, Rivilleza, & Mendoza, 1994). Among the var-
ious Canavalia species assessed by Siddhuraju and Beck-
er (2001), the total phenols of the red seed variety of C.

gladiata (1.82%) is higher than brown-seeded C. gladiata

(1.53%) and C. cathartica (1.55%) and comparable to
faba bean and higher than cultivated legumes. Tannins
were absent in brown-seeded C. gladiata and C. ensifor-
mis unlike red-seeded C. gladiata and C. cathartica. Tan-
nins were also absent in C. maritima and C. cathartica of
the coastal sand dunes (Arun et al., 2003). Rajaram and
Janardhanan (1992) reported very low amounts of total
free phenols and tannins in seeds of C. ensiformis and C.

gladiata. The total free phenols of C. ensiformis and C.

gladiata seeds are lower than other wild legumes (V. ses-

quipedalis, V. sinensis, V. umbellata var. RBL 40, var.
K1 and Phaseolus lunatus) (Mohan & Janardhanan,
1994).

The polyamines viz., sym-homospermidine (C. gladi-

ata root nodules) and canavalamine (senescent nodules)
were found in Canavalia spp., but absent in other legu-
minous crops (Fujihara, Nakashima, Kurogochi, &
Yamaguchi, 1986). Canavalamine appeared in the
immature seed and its concentration increased as seed
formation progressed (Matsuzaki, Hamana, Okada,
Niitsu, & Samejima, 1990). Aminopropyl and aminobu-
tyl (novel pentaamines) derivatives of canavalamine
were detected in C. gladiata.
7.5. Protease inhibitors

Trypsin and chymotrypsin inhibitors reduce protein
digestibility and induce pancreatic hypertrophy (Liener,
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1976). They form stable complexes with trypsin and chy-
motrypsin (1:1 M ratio) obstructing their binding sites
and disrupting enzymatic action. Orru and Demel
(1941) reported trypsin inhibitors in C. ensiformis seeds
for the first time. The trypsin and chymotrpisin activities
of Canavalia spp. ranged from 0.022 to 10.22 mg g�1

and 0.5 to 3.48 unit mg�1, respectively (Table 7). Raja-
ram and Janardhanan (1992) reported low levels of tryp-
sin inhibitors in C. ensiformis and C. gladiata. Three
novel chymotrypsin inhibitors were isolated and se-
quenced by Terada, Fujimura, Kino, and Kimoto
(1994) from C. maritima seeds. Heat-stable and pH sta-
ble (pH 2 and 11) protease inhibitor of C. ensiformis

seeds is active against bovine and porcine trypsins (Ku-
mari & Pattabiraman, 1990) and was effective in block-
ing proteolytic, tryptic and chymotryptic activities of
rabbit pancreas. Among the Canavalia spp. studied (Sid-
dhuraju & Becker, 2001), trypsin inhibitor activity of
red-seeded C. gladiata was higher than brown-seeded
C. gladiata, C. ensiformis, and C. cathartica and was
comparable to lima bean, lablab bean and lower than
soybean. Chymotrypsin inhibitor activity in C. ensifor-
mis, C. gladiata and C. cathartica seeds was lower than
important food legumes, field beans and comparable
to C. arietinum (Siddhuraju & Becker, 2001). Seed ger-
mination in C. ensiformis is known to decrease trypsin
inhibitors (Akpapunam & Sefa-Dedeh, 1997). The a-
amylase inhibitor activity was absent in all Canavalia

spp. except for C. cathartica (Siddhuraju & Becker,
2001) and was lower than Vicia faba and Phaseolus vul-
garis. Lorenzo, Tovar, Pinelli, and Seidl (1989) reported
variety- and species-specific subtilisin inhibitors from C.

ensiformis.

7.6. Phytates and cyanides

Legume seeds constitute 1–3% of phytate (or inositol
hexaphosphate) and are dependent on species, cultivars,
climatic conditions, soils, locations, seasons and seed
germination. It is necessary to select those landraces
possessing low amounts of phytate for consumption.
Phytates reduce the uptake of essential dietary minerals
such as iron, zinc and calcium in the human intestine
(Brune, Rossander-Hulthén, Hallberg, Gleerup, &
Sandberg, 1992; Hallberg, Brune, & Rossander, 1989;
Onuegbu, Zibokere, Chinah, & Ukata, 1993). Vitamin
C counteracts the inhibitory effect of phytate as it is
an iron absorption enhancer (Siegenberg et al., 1991).
Green pods of C. gladiata are rich source of vitamin C
(Daloz, 1988) and phytates of seeds of Canavalia spp.
(0.48–1.092%) were within or lower than many legumes
(Siddhuraju & Becker, 2001).

Cyanide is an antinutritional component in legumi-
nous seeds that can be eliminated by soaking and re-
moval of testa prior to boiling. Seeds of C. gladiata

have 50 lg g�1 as in most legumes (Laurena et al.,
1994). However, Okolie and Ugochukwu (1989) re-
ported cyanide up to 1093, 285, 953 mg kg�1 in dry
seeds, testa and cotyledons of C. gladiata. Hydrogen
cyanide of raw seeds of C. ensiformis and C. cathartica

is 0–11.2 and 13 mg 100 g�1 (Table 7). Soaking (24 h)
and boiling (3 h) reduces cyanide tremendously in coty-
ledons (Okolie & Ugochukwu, 1989). Similarly, germi-
nation was effective in considerable reduction of
hydrogen cyanide (49.1%) (Akpapunam & Sefa-Dedeh,
1997).

7.7. Saponins, urease and L-DOPA

Saponins consist of a steroidal or triterpene aglycone
attached by ester- or ether-linked bonds to one or three
variably sized saccharide chains. It causes erythrocyte
hemolysis, reduction of blood and liver cholesterol,
growth depression, bloat, inhibition of smooth muscle
activity and reduction in nutrient uptake (Cheeke,
1971). Saponins like lectins, bind to the cells of the small
intestine affecting nutrient absorption across the intesti-
nal wall (Johnson, Gee, Price, Curl, & Fenwick, 1986).
Oakenfull, Topping, Illuman, and Fenwick (1984) re-
ported cholesterol-lowering effects in animals and hu-
mans by the formation of micelles and bile acids into
micellar bile acid molecules by saponins. The concentra-
tion of saponins varies among the Canavalia spp. (571–
1005 mg 100 g�1) (Table 7), possibly due to different
cultivars belonging to different geographical locations.
Price, Curl, and Fenwick (1986) reported that seeds of
C. ensiformis are devoid of saponins, while Acamovic
(1987) and Belmar and Morris (1994) reported their
presence. However, saponins in Canavalia spp. are less
than in chickpea and soybean (Siddhuraju & Becker,
2001). Saponins are recently shown to have hypocholes-
terolemic as well as anticarcinogenic effects (Koratkar &
Rao, 1997), hence exploration of neutraceutical proper-
ties of Canavalia spp. are warranted.

Seeds of C. ensiformis are a commercial source of ure-
ase (EC 3.5.1.5; 489,000 kD), which catalyzes hydrolysis
of urea to ammonia, carbon dioxide and water (Dixon,
Riddles, Gazzola, Blakeley, & Zerner, 1980; Rosenthal,
1974; Staples & Reithel, 1976). Urease is present in the
cytosol of the storage parenchyma cells of C. ensiformis

cotyledons (Faye, Greenwood, & Chrispeels, 1986). As
it is heat-labile, it can be easily removed from Canavalia
seeds by thermic treatments.

Concentration of non-protein amino acid, L-DOPA
(3,4-dihydroxy phenylalanine) of seeds of Canavalia

spp. were relatively low to moderate (2130–
4300 mg 100 g�1) (Table 7) compared to Mucuna spp.
L-DOPA is a neurotoxic agent used in the treatment of
Parkinson�s disease (Bell & Janzen, 1971). However, it
can result in hallucinations, dyskinesias and gastrointes-
tinal disturbances (Prada, Keller, Pieri, Kettler, & Haef-
ely, 1984).
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8. Processing and detoxification

Seed processing techniques such as soaking, germina-
tion, hydrothermal processing and fermentation in-
crease cereal and legume enzyme activity. For instance,
seed germination results in activation or synthesis of
phytase, similarly, lactic acid fermentation is favorable
for cereal phytase activity (Sandberg, 2002). Improved
nutritive value of legume seeds by thermic treat-
ments was first demonstrated by Osborne and Mendel
(1917). Moist heat proved to be more effective than
dry heat to inactivate hemagglutinins (pressure-cooking,
45 min) and trypsin inhibitors (pressure-cooking,
30 min) of C. ensiformis seeds (Carlini & Udedibie,
1997). Cracking of C. ensiformis seeds (3–7 pieces per
seed) prior to cooking is the most effective means to to-
tally eliminate hemagglutination activities (cooking, 1 h;
pressure-cooking, 15 min) (Udedibie & Carlini, 1998b).
However, cooking (2 h) or pressure-cooking (45 min) is
effective in elimination of hemagglutination activity in
whole seeds. Cooking and germination of seeds of C.

ensiformis reduced trypsin inhibition activity to 38%
and 12%, respectively (Akpapunam & Sefa-Dedeh,
1997). Germination of Phaseolus vulgaris seeds also
showed similar results (Sathe, Deshpande, Reddy, Goll,
& Salunkhe, 1983). Soaking (24 h) followed by cooking
(20 min) destroyed trypsin inhibitors in seeds of C. ens-

iformis (Babar et al., 1988). However, prolonged cook-
ing (3 h) of seeds of C. ensiformis resulted in
toughening and unpleasant odor (Akpapunam & Sefa-
Dedeh, 1997).

The in vitro starch digestibility of dry-autoclaved
cotyledons of C. gladiata flours exhibited improved
digestibility and weight gain in rats (Ekanayake et al.,
2000b). Ekanayake et al. (2000b) found low protein
digestibility and biological value on using C. gladiata

seeds as a diet in rats. This necessitates further explora-
tion of the effect of different processing methods on pro-
tein availability of C. gladiata seeds. Kessler, Belmar,
and Ellis (1990) studied 1–8 or 5–8 weeks of growth
period of chicks on offering commercial and thermally
treated seeds of C. ensiformis. Reduction in growth rate
(35–55%), feed intake and conversion efficiency; enlarge-
ment of pancreas and liver was evident on feeding chicks
with 300 g kg�1 of autoclaved (30 or 60 min) seeds of
C. ensiformis. Thus, alternate methods other than
autoclaving of seeds are recommended for employing
C. ensiformis seeds as chick feed.

Seeds of C. ensiformis processed in various ways have
been employed in chick diets (300 g kg�1) by Belmar and
Morris (1994). Boiling is a satisfactory method for the
inactivation of heat-labile lectins, soaking and shaking
were effective in reducing Cav and hemolytic activity
of saponins in C. ensiformis (Belmar & Morris, 1994).
Chicks fed with boiled seeds (1 or 2 h) showed 50%
weight gain compared to control diets, while combina-
tion of boiling followed by soaking and shaking of seeds
was successful in removal of most of the antinutritional
factors. However, residual toxic effects persisted in the
processed seeds and caused a decline of 10% feed intake
and growth rate. Rats (45–50 g, 21 days) fed with raw
seeds of C. gladiata indicated low biological value and
true digestibility and low liver, thymus and thyroid
weights (Aguirre, Savon, Oramas, Dihigo, & Rodriguez,
1998). The highest protein nutritional quality of C. glad-

iata seed flours and grits was obtained by cooking or
soaking and cooking (Ekanayake, Nair, Jansz, & Asp,
2003). One day soaking of C. ensiformis seeds prior to
cooking (20 min) ensured complete inactivation of tryp-
sin inhibitors (Babar et al., 1988). Therefore trypsin
inhibitors are of little antinutritional consequence if
the seeds are adequately heated.

The improvement of nutritive value of C. ensiformis by
toasting of seeds was first reported by Borchers and Ack-
erson (1950). Toasted seeds of C. ensiformis (3 vs. 24 min,
190 �C) resulted in improvement of chick response vs.
duration of toasting. Whole seeds of C. ensiformis roasted
at various conditions completely diminished hemaggluti-
nation activity (Melcion et al., 1998). Léon, Vargas,
Michelangeli, and Melcion (1998) demonstrated that
roasting of seeds of C. ensiformis destroys the antinutri-
tional factors without adverse effects on the biological va-
lue. Seeds of C. ensiformis consist of oligosaccharides that
cause flatulence, rectal gas discharge, stomach crumbling,
diarrhoea and nausea (Babar et al., 1988). Oligosaccha-
rides of C. ensiformis seeds (1.8%) were eliminated by
roasting (2 min) and there was a 30–40% reduction after
germination (1–2 days) (Revilleza et al., 1990). Animal
experiments were carried out on variously roasted seeds
of C. ensiformis using chicks (acceptability test) and adult
cockerels (nitrogen balance, true nitrogen digestibility) by
Léon et al. (1990). The best results in relation to feed in-
take were obtained at roasting temperature 164–168 �C
(medium) or 180–190 �C (high) for 24–26 min, which
was attributed to decreased Cav and hemagglutinating
activity.

Tepal, Castellanos, Larios, and Tejada (1994) con-
ducted extrusion and extraction of C. ensiformis seeds
to remove Cav. The Cav of raw C. ensiformis seeds
(100 g kg�1) subjected to 1-acid and 2-acid extraction
(pH 5.5, 2 h) reduced to 8.5 and 4.9 g kg�1. Effectiveness
of extractability of antinutritional factors using the base
and acid soluble protein fraction on feeding the chicken
with C. ensiformis was examined by Ologhobo, Apata,
and Oyejide (1993). Decrease in weight of liver; increase
in weight of kidney, brain and pancreas; growth depres-
sion; elevation of serum urea and enzyme activity were
noted. Histopathological examination revealed many
pathological lesions in organs of chickens fed with base
and acid soluble protein fractions, defatted C. ensiformis
and raw C. ensiformis seed diets. Three feeding methods
(ad libitum feeding, dry and wet force feeding) were con-
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ducted for raw and extruded C. ensiformis seeds (Léon
et al., 1990). Extrusion improved digestibility of nutri-
ents (20% for amino acid, 30% for starch) of C. ensifor-

mis seeds. Seed extraction followed by different
treatments (e.g., heat treatments, dietary supplements
of amino acids and potassium acetate) on the nutritive
value of C. ensiformis was examined (D�Mello & Walk-
er, 1991). Feeding the young chicks with processed seeds
of C. ensiformis (aqueous solution of KHCO3, 10 g g�1;
80 �C for 48 h; followed by autoclaving, 1 h, 120 �C) re-
duced Cav to negligible quantities (D�Mello & Walker,
1991). Extrusion and pressure-cooking of C. ensiformis

seeds with lime was found to be effective in improving
the protein quality (Bressani & Sosa, 1990). Extruded
products of C. ensiformis seed flour and semolina blend
(30:70) had protein of moderate nutritive value and
could be advocated in countries where C. ensiformis is
cultivated (Vaidehi & Shivaleela, 1984).

Amendment of C. ensiformis seeds with calcium
hydroxide (0.45%) followed by pressure-cooking
(30 min) indicated beneficial effects (D�Mello, Acamo-
vic, & Walker, 1985). Significant improvement in pro-
tein quality of C. ensiformis seeds was noticed on
methionine supplementation, while arginine supplemen-
tation resulted in minor growth improvements of chick.
Seeds of C. ensiformis (KHCO3-treated and autoclaved)
supplemented with lysine, arginine, tryptophan and
potassium acetate in diets of chicks showed marked
improvement in nitrogen utilization. Creatine supple-
mentation of autoclaved C. ensiformis seed diets en-
hanced the food efficiency and nitrogen utilization in
chicks, which was further enhanced on addition of 2-
aminoisobutyric acid, arginine and lysine (D�Mello,
Walker, & Noble, 1990). Potassium acetate also induced
improvement in the nitrogen retention efficiencies of
chicks fed with autoclaved C. ensiformis seed diets.
Urea-treated and toasted C. ensiformis seed meals
(10% and 20%) improved broiler performance compared
to control (Udedibie, Esonu, Obaji, & Durunna, 1994).
The inclusion of urea treated (40 h) and decorticated C.

ensiformis seeds (20%) increased the nutritional quality
of mash resulting in 134.7% increase in growth. Soaking
of C. ensiformis seeds in kitchen soda (10 g l�1; 1:3 w/v)
significantly reduced Cav to 75–82% (Gupta, Yadav,
Gupta, Sahoo, & Agrahar, 2001) which qualifies this
method for amendment purposes. Thus, amended C.
ensiformis seeds (e.g., urea, kitchen soda, methionine)
can be safely incorporated in ration of livestock without
any adverse physiological effects.
9. Pharmacological importance

Protein with complete sequence homology to bovine
insulin (recognized by antihuman insulin antibodies) is
present in C. ensiformis seed coats (Oliveira, Sales,
Machado, Fernandes, & Xavier, 1999). It lowered the
blood glucose levels of alloxanized mice indicating that
it is biologically potent for treatment of diabetes. Seed
proteins of C. ensiformis considerably lowered the cho-
lesterol in hypercholesterolimic rats (Marfo, Wallace,
Timpo, & Simpson, 1990) indicating the importance of
PUFA of Canavalia spp. The viability of the liver cancer
cells (HepG2) was reduced by 80% and 0% on treatment
with fermented C. gladiata seed solution (Chen, Lu,
Chan, & Lin, 2000). The leaves and pink colored seeds
of C. gladiata are used to treat skin rashes in Chinese
medicine (Kay, 1979). Aqueous extract of C. cathartica

produced a number of CNS effects including potentia-
tion of pentobarbitone hypnosis in mice (1 mg 100 g�1)
and morphine catalepsy in albino rats (1 mg 100 g�1)
(Mukhopadhyay et al., 1986). Alpha-mannosidase
(220 kD) of C. ensiformis is known to stimulate the pro-
liferation of B-lymphocytes of nude mice (Einhoff &
Ruediger, 1988).
10. Pest control

Phytochemical investigations of raw seeds of C. ensi-

formis revealed the presence of several ANFs (Con A,
saponins, cyanogenic glycosides, terpenoids, alkaloids
and tannic acid), which render them free from insect at-
tack (Oliveira, 1997; Udedibie & Carlini, 1998a; Udedi-
bie & Nwaiwu, 1988). Oliveira et al. (1999) found that
many proteins present in the seeds of C. ensiformis (tryp-
sin inhibitors, canatoxin) are detrimental to the develop-
ment of bruchid insect, Callosobruchus maculatus. Con
A of C. ensiformis exhibited insecticidal property by
affecting the function of soluble and brush border mem-
brane enzymes in the mid gut of tomato moth larvae,
Lacanobia oleracea (Fitches & Gatehouse, 1998). Gate-
house et al. (1999) studied the impact of Con A of C.

ensiformis on insect crop pests of two orders (Lepidop-
tera and Homoptera). On feeding tomato moth larvae
(L. oleracea) with con A, resulted in retarded develop-
ment and decreased 90% survival. The peach–potato
aphid (Myzus persicae) fed with 1–9 lM Con A in liquid
artificial diet reduced its size (up to 30%) and reduced
fecundity (over 30%) and retarded its development.
Con A of Canavalia spp. is a protective agent against in-
sect pests and it is useful in creating transgenic plants
resistant to insect by genetic engineering (Sauvion
et al., 2004). Cav of C. ensiformis retards the growth
of Spodoptera larvae and also causes antifertility in P.

americana (Koul, 1983, 1985). Leaf cutting ants (Atta

sexdens) fed with leaves of C. ensiformis showed high
mortality and decrease in fungal garden volume with
depletion of nests after 11 weeks of treatment (Hebling,
Bueno, Pagnocca, Silva, & Maroti, 2000). The inhibitory
effects of leaf extracts of C. ensiformis on the develop-
ment of symbiotic fungus of the leaf-cutting ants (A.
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sexdens) was studied and the chromatographic separa-
tion of the leaf extract consisted of a mixture of fatty
acids which showed the inhibitory effect (Monteiro
et al., 1998). Morris and Walker (2002) mixed dried
ground C. ensiformis tissues with soil (1%, 2%, 2.5%
and 5% w/v) infected with nematode (Meloidogyne
incognita) and found a reduction in nematode gall num-
bers on incubation of up to 1 week (21–27 �C).
11. Outlook

This review suggests that seeds of Canavalia spp. are
a rich source of proteins, essential amino acids, carbohy-
drates and energy. Out of the four Canavalia spp., C.

maritima and C. cathartica are shown to be a good
source of sulphur amino acids. These species are least
explored and can be exploited in breeding programmes
for mass cultivation and conservation. Canavalia spp.
also possesses a variety of antinutritional factors that
can cause adverse effects on consumers. Various types
of detoxification studies have been conducted and a
few have been successful in the reduction or and elimina-
tion of antinutritional components. Concanavalin A has
a variety of applications such as a blood grouping sub-
stance, immunomodulator and tissue marker. Canavan-
ine is an anticancer agent and can be employed mainly
in pancreatic cancer studies. However, more informa-
tion pertaining to administration of antinutritional fac-
tors besides canavanine and concanavalin A is
essential to assess the overall toxicity and intake of seeds
of Canavalia spp. in test animals. There is a clear gap in
the knowledge of vitamins of these gene pools. The use
of various landraces of Canavalia as rotation crop, cover
crop and plant growth promoters and secondary metab-
olites has to be further investigated.
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